FERRO E LIGAS DE FERRO – MATERIAIS BIODEGRADÁVEIS PARA USO COMO BIOMATERIAIS

Autores

  • Ana Lucia do Amaral Escada Centro Universitário Internacional - UNINTER
  • Priscila Fernandes Centro Universitário Internacional - UNINTER
  • Flavio Tajima Barbosa Centro Universitário Internacional - UNINTER https://orcid.org/0000-0003-4465-8157

DOI:

https://doi.org/10.22169/cadernointer.v14n53.3678

Resumo

O objetivo geral deste estudo foi fazer uma revisão bibliográfica das diversas ligas metálicas que são aplicadas para uso como biomateriais, focando nas ligas biodegradáveis a base de ferro usadas como biomateriais e os diversos tratamentos de superfície propostos nas últimas décadas para melhorar a biocompatibilidade e taxas de corrosão. A metodologia utilizada foi revisão da literatura com pesquisas realizadas em diversas bases de dados como Google Acadêmico, Science Direct e SciELO. A seleção abrangeu artigos científicos, monografias, dissertações e teses em português e inglês. A busca teve como foco as publicações nos últimos 20 anos, no entanto, informações relevantes em publicações anteriores não foram excluídas. As publicações selecionadas incluíram estudos ligados ao ferro e suas ligas utilizadas como biomateriais e aos tratamentos de superfícies nesses metais. Dentro da Pesquisa Bibliográfica foi possível revisar os biomateriais metálicos, as ligas a base de ferro utilizadas como biomateriais biodegradáveis e os tratamentos de superfície para melhorar a biocompatibilidade e taxa de corrosão.  Concluiu-se que existem diversos tipos de metais utilizados como biomateriais e que atualmente as pesquisas se voltam para o estudo em metais que tenham a capacidade de se degradar em ambientes fisiológicos como o ferro e suas ligas, e que os tratamentos de superfície nesses metais melhoram sua taxa de corrosão.

Palavras-chave: ferro puro; ligas de ferro; tratamentos superfícies; biomateriais.

Abstract

The general objective of this study was to conduct a literature review of various metallic alloys applied for use as biomaterials, focusing on iron-based biodegradable alloys used as biomaterials and the various surface treatments proposed in recent decades to improve biocompatibility and corrosion rates. The methodology used was a literature review with searches conducted in several databases such as Google Scholar, Science Direct, and SciELO. The selection included scientific articles, monographs, dissertations, and theses in Portuguese and English. The search focused on publications from the last 20 years; however, relevant information from earlier publications was not excluded. The selected publications included studies related to iron and its alloys used as biomaterials and surface treatments applied to these metals. Through bibliographic research, it was possible to review metallic biomaterials, iron-based alloys used as biodegradable biomaterials, and surface treatments aimed at improving biocompatibility and corrosion rate. The study concluded that there are several types of metals used as biomaterials and that current research focuses on metals capable of degrading in physiological environments, such as iron and its alloys, and that surface treatments improve their corrosion rate.

Keywords: pure iron; iron alloys; surface treatments; biomaterials.

Resumen

El objetivo general de este estudio fue realizar una revisión bibliográfica de las diversas aleaciones metálicas aplicadas como biomateriales, enfocándose en las aleaciones biodegradables a base de hierro utilizadas como biomateriales y en los diversos tratamientos superficiales propuestos en las últimas décadas para mejorar la biocompatibilidad y las tasas de corrosión. La metodología utilizada fue la revisión de literatura con búsquedas realizadas en diversas bases de datos como Google Académico, Science Direct y SciELO. La selección incluyó artículos científicos, monografías, disertaciones y tesis en portugués e inglés. La búsqueda se centró en publicaciones de los últimos 20 años, sin excluir información relevante de publicaciones anteriores. Las publicaciones seleccionadas incluyeron estudios relacionados con el hierro y sus aleaciones utilizadas como biomateriales, así como los tratamientos superficiales aplicados a estos metales. Dentro de la revisión bibliográfica fue posible analizar los biomateriales metálicos, las aleaciones de hierro utilizadas como biomateriales biodegradables y los tratamientos de superficie para mejorar la biocompatibilidad y la tasa de corrosión. Se concluyó que existen diversos tipos de metales utilizados como biomateriales y que actualmente las investigaciones se centran en el estudio de metales con capacidad de degradarse en ambientes fisiológicos, como el hierro y sus aleaciones, y que los tratamientos superficiales mejoran su tasa de corrosión.

Palabras clave: hierro puro; aleaciones de hierro; tratamientos superficiales; biomateriales.

Downloads

Não há dados estatísticos.

Referências

ASCHNER, M. et al. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicological Applied Pharmacology, v. 221, p. 131-147, 2007. DOI: 10.1016/j.taap.2007.03.001. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC1950780/. Acesso em: 24 out. 2025.

AUERBACH, M.; BALLARD, H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology, p. 338-347, 2010. DOI: 10.1182/asheducation-2010.1.338. Disponível em: https://ashpublications.org/hematology/article/2010/1/338/96129/Clinical-Use-of-Intravenous-Iron-Administration. Acesso em: 24 out. 2025.

BAGHERIFARD, S. et al. Accelerated biodegradation and improved mechanical performance of pure iron through surface grain refinement. Acta Biomaterialia, v. 98, p. 88-102, 2019. DOI: 10.1016/j.actbio.2019.05.033. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1742-7061(19)30360-5. Acesso em: 24 out. 2025.

BAZAKA, O. et al. Metallic implants for biomedical applications. In: The Chemistry of Inorganic Biomaterials. [S.l.: s.n.], [s.d.]. Cap. 1. DOI:10.1039/9781788019828-00001.

BOWEN, P. K. et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys. Advanced Healthcare Materials, v. 5, p. 1121-1140, 2016. DOI: 10.1002/adhm.201501019. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC4904226/. Acesso em: 24 out. 2025.

BORNAPOUR, M.; MAHJOUBI, H.; VALI, H. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant. Materials Science and Engineering C, v. 67, p. 72-84, 2016. DOI: 10.1016/j.msec.2016.04.108. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0928-4931(16)30425-8. Acesso em: 24 out. 2025.

CHEN, Q.; THOUAS, G. A. Metallic implant biomaterials. Materials Science and Engineering R, v. 87, p. 1-57, 2015. DOI: 10.1016/j.mser.2014.10.001. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0927796X14001077?via%3Dihub. Acesso em: 24 out. 2025.

CHENG, J.; HUANG, T.; ZHENG, Y. F. Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Materials Science and Engineering C, v. 48, p. 679-687, 2015. DOI: 10.1016/j.msec.2014.12.053. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493114008510?via%3Dihub. Acesso em: 24 out. 2025.

HEIDEN, M.; WALKER, E.; STANCIU, L. Magnesium, iron and zinc alloys, the trifecta of bioresorbable orthopedic and vascular implantation—a review. Journal of Biotechnology & Biomaterials, v. 5, n. 2, p. 1–9, 2015. DOI: https://doi.org/10.4172/2155-952X.1000178.

HERMAWAN, H. et al. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomaterialia, v. 6, n. 5, p. 1852-1860, 2010. DOI: https://doi.org/10.1016/j.actbio.2009.11.025. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1742706109005212?via%3Dihub. Acesso em: 24 out. 2025.

HONG, D. et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomaterialia, v. 45, p. 375-386, 2016. DOI: https://doi.org/10.1016/j.actbio.2016.08.032. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1742706116304287?via%3Dihub. Acesso em: 24 out. 2025.

HUANG, T.; CHENG, J.; ZHENG, Y.F. In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Materials Science and Engineering C, v. 35, p. 43-53, 2014. DOI: https://doi.org/10.1016/j.msec.2013.10.023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493113005912?via%3Dihub. Acesso em: 24 out. 2025.

HUANG, T.; ZHENG, Y. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays. Scientific Reports, v. 6, n. 1, p. 23627, 2016. DOI: https://doi.org/10.1038/srep23627. Disponível em: https://www.nature.com/articles/srep23627. Acesso em: 24 out. 2025.

HUANG, T. et al. Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, v. 104, n. 2, p. 225-240, 2016. DOI: https://doi.org/10.1002/jbm.b.33380. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.33380. Acesso em: 24 out. 2025.

IBRAHIM, M. Z. et al. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – a review article. Journal of Alloys and Compounds, v. 714, p. 636-667, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.04.231. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S092583881731441X?via%3Dihub. Acesso em: 24 out. 2025.

KROPF, M.; MARIA, A.; ANTUNES, D.S. The nanobiotechnology-based development of new orthopedic implants. Nanomedicine and Nanotechnology Journal, v. 1, n. 1, p. 111, 2018. DOI: https://doi.org/10.24966/NTMB-2044/100006.

LEE, H. et al. Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioactive Materials, v. 9, p. 239-250, 2022. DOI: https://doi.org/10.1016/j.bioactmat.2021.07.003. Disponível em: https://www.sciencedirect.com/science/article/pii/S2452199X21003248. Acesso em: 24 out. 2025.

LI, H.; ZHENG, Y.; QIN, L. Progress of biodegradable metals. Progress in Natural Science: Materials International, v. 24, n. 5, p. 414-422, 2014. DOI: https://doi.org/10.1016/j.pnsc.2014.10.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S2452199X24000276. Acesso em: 24 out. 2025.

LIN, W. et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomaterialia, v. 54, p. 454-468, 2017. DOI: https://doi.org/10.1016/j.actbio.2017.03.012. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1742-7061(17)30182-4. Acesso em: 24 out. 2025.

LIU, B.; ZHENG, Y.F.; RUAN, L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, v. 65, p. 540-543, 2011. DOI: https://doi.org/10.1016/j.matlet.2010.11.056.

MAHAJAN, A.; SIDHU, S.S. Surface modification of metallic biomaterials for enhanced functionality: a review. Materials Technology, v. 33, n. 2, p. 93-105, 2017. DOI: https://doi.org/10.1080/10667857.2017.1377971.

MOSZNER, F. et al. Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Materialia, v. 59, n. 3, p. 981-991, 2011. DOI: https://doi.org/10.1016/j.actamat.2010.10.025.

ORTOLANI, A. et al. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review. Joints, v. 4, n. 4, p. 228-235, 2016. DOI: https://doi.org/10.11138/jts/2016.4.4.228. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC5297347/. Acesso em: 24 out. 2025.

PAIM, T. C. et al. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy. Materials Science and Engineering C, v. 111, p. 111129, 2020. DOI: https://doi.org/10.1016/j.msec.2020.111129. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0928-4931(20)30145-4. Acesso em: 24 out. 2025.

PATEL, N.R.; GOHIL, P.P. A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, v. 2, n. 1, p. 91-101, 2012. Disponível em: https://www.ijetae.com/files/Volume2Issue1/IJETAE_0112_17.pdf. Acesso em: 24 out. 2025.

PEUSTER, M. et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, v. 27, n. 28, p. 4955-4962, 2006. DOI: https://doi.org/10.1016/j.biomaterials.2006.05.029.

QI, Y. et al. Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Applied Materials & Interfaces, v. 10, n. 1, p. 182-192, 2018. DOI: https://doi.org/10.1021/acsami.7b14057.

RYU, H.; SEO, M. H.; ROGERS, J. A. Bioresorbable metals for biomedical applications: from mechanical components to electronic devices. Advanced Healthcare Materials, v. 10, n. 17, e200223, 2021. DOI: https://doi.org/10.1002/adhm.20200223. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202002236. Acesso em: 24 out. 2025.

SAY, Y. et al. Influence of chemical etchings on surface properties, in-vitro degradation and ion releases of 316L stainless steel alloy for biomedical applications. Materials Chemistry and Physics, v. 285, p. 127139, 2023. DOI: https://doi.org/10.1016/j.matchemphys.2022.127139.

SHARMA, P.; PANDEY, P.M. A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold. Materials Letters, v. 222, p. 160–163, 2018. DOI: https://doi.org/10.1016/j.matlet.2018.03.095.

SHARMA, P.; PANDEY, P.M. Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application. Materials Science and Engineering C, v. 99, p. 838–852, 2019. DOI: https://doi.org/10.1016/j.msec.2019.02.009. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493119300323?via%3Dihub. Acesso em: 24 out. 2025.

SCHINHAMMER, M. et al. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, v. 6, n. 5, p. 1705–1713, 2010. DOI: https://doi.org/10.1016/j.actbio.2009.07.039.

SCHINHAMMER, M. et al. Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C (–Pd) TWIP alloys. Acta Materialia, v. 60, n. 6–7, p. 2746–2756, 2012. DOI: https://doi.org/10.1016/j.actamat.2012.01.041. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1359645412000791. Acesso em: 24 out. 2025.

VERMA, R.P. Titanium based biomaterial for bone implants: a mini review. Materials Today: Proceedings, v. 26, p. 3148–3151, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.02.635.

VOJTECH, D. et al. Comparative mechanical and corrosion studies on magnesium, zinc and iron alloys as biodegradable metals. Materials and Technology, v. 49, n. 6, p. 877–882, 2015. DOI: https://doi.org/10.17222/mit.2014.249.

XU, Y. et al. Effects of pulse frequency and current density on microstructure and properties of biodegradable Fe-Zn alloy. J. Mater. Res. Technol., 18 (2022), pp. 44-58

WANG, H. et al. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation. Applied Surface Science, v. 403, p. 168–176, 2017. DOI: https://doi.org/10.1016/j.apsusc.2017.01.112.

WANG, Y. B. et al. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Materials Science and Engineering C, v. 32, p. 599–606, 2012. DOI: https://doi.org/10.1016/j.msec.2012.01.002.

WEGENER, B. et al. Development of a novel biodegradable porous iron-based implant for bone replacement. Scientific Reports, v. 10, n. 1, p. 9141, 2020. DOI: https://doi.org/10.1038/s41598-020-66289-y.

WITTE, F. Biodegradable metals. In: RATNER, B.D. et al. Biomaterials Science: An Introduction to Materials in Medicine. 4. ed. San Diego: Elsevier, 2020. p. 271–287.

WOOD, J.; MAJUMDAR, G. Ion implantation. In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2016. DOI: https://doi.org/10.1016/B978-0-12-803581-8.04001-4.

YUSOP, A.H.M.; DAUD, N.M.; NUR, H.; KADIR, M.R.A.; HERMAWAN, H. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific Reports, v. 5, n. 1, p. 11194, 2015. DOI: https://doi.org/10.1038/srep11194.

ZHANG, L.C.; CHEN, L.Y. A review on biomedical titanium alloys: recent progress and prospect. Advanced Engineering Materials, v. 21, n. 2, p. 1801215, 2019. DOI: https://doi.org/10.1002/adem.201801215.

ZHANG, Y. et al. Recent advances in Fe-based bioresorbable stents: materials design and biosafety. Bioactive Materials, v. 31, p. 333-354, 2024. DOI: https://doi.org/10.1016/j.bioactmat.2023.11.010.

Downloads

Publicado

2025-10-31